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Motivation

◮ Many lattice-QCD calculations are now reaching a precision for which
electromagnetic (EM) and isospin-breaking effects may enter near the level of
current lattice uncertainties.

◮ Current dominant errors for the
calculation of the hadronic
contributions to the muon anomalous
magnetic moment (g - 2) are from
omission of EM and isospin breaking,
and from quark-disconnected
contributions.
(HPQCD, PRD 96(2017) no.3, 034516)
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◮ The calculation of EM and
isospin-violating effects in the kaon
and pion systems is a long-standing
problem and is crucial for determining
the light up- and down-quark masses.
(MILC, arXiv:1807.05556, and
Fermilab Lattice, MILC,
and TUMQCD Collaborations
arXiv:1802.04248)

https://inspirehep.net/search?p=find+eprint+1601.03071
https://arxiv.org/abs/1807.05556
https://arxiv.org/abs/1802.04248
https://arxiv.org/abs/1802.04248
https://arxiv.org/abs/1802.04248
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QCD + QED action

In the continuum, the QCD Lagrangian density (in Minkowski space) for one

spin-1/2 field without interacting with the EM field is

LQCD = LQCDF
+ LQCDG

=
∑

f

ψ̄f
i (iγµDfµ

ij − M f )ψf
j −

1

4g2
Ga

µνGµν
a . (1)

The Euclidean QCD + QED Lagrangian density is

L =
∑

f

ψ̄f
i (γµD

fµ
ij + M

f )ψf
j +

1

4g2
G

a
µνG

µν
a +

1

4e2
FµνF

µν , (2)

with

D
f
µ =∂µ + iAµ(x) + iq

f
A

′
µ(x), (3)

q
f =2/3 for u quark, e ≈

√

4π/137, (4)

G
a
µν =∂µA

a
ν(x)− ∂νA

a
µ(x) + fabcA

b
µ(x)A

c
ν(x), (5)

Fµν =∂µA
′
ν(x)− ∂νA

′
µ(x). (6)

The QCD + QED action becomes

S =

∫

dx
4
L = SF + SGQCD

+ SGQED
. (7)
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QCD + QED action

◮ The lattice QCD (SU(3)) gauge action SGQCD
is a function of

◮ the link variable Uµ(n) = eiAµ(n) and the QCD coupling g.

◮ The lattice QED (U(1)) gauge action SGQED
is a function of

◮ the link variable U
′q
µ (n) = e

iqA′

µ
(n)

for compact QED;

or

◮ the real valued vector potential of an EM field A′
µ(x) for non-compact QED.

and

◮ the QED coupling e.

◮ The lattice fermion action SF is a function of

◮ the link variables Uµ(n) and U
′q
µ (n) (i. e., SF has both SU(3) and U(1)

components).



5/17

QCD + QED action

◮ The naive QCD+QED lattice fermion action is

Snaive
F =

∑

x,y

ψ̄(x)[M(Ueff )]xyψ(y), (8)

where ψ(x) is the charged spin 1/2 particle field.

◮ The staggered fermion classical Hamiltonian is obtained by changing the ψ(x)
field to the staggered field χ(x), introducing the pseudo-fermion filed Φ(on even
sites only) and the canonical momentum h and h′ conjugate to Aµ and A′

µ,

H[Φq
e ;A′;U;U′q ; g; e] =

∑

i

1

2
h 2

i +
∑

i

1

2
h′ 2

i + SPF + SGQCD
+ SGQED

. (9)

◮ The staggered pseudo-fermion action with nf degenerate fermion flavors is

SPF =

〈

Φ

∣

∣

∣

∣

[

M†[Ueff ]M[Ueff ]
]−nf /4

∣

∣

∣

∣

Φ

〉

, (10)

Mx,y

[

Ueff
]

= 2mδx,y+Dx,y

[

Ueff
]

= 2mδx,y+
∑

µ

ηx,µ

(

Ueff
x,µδx,y−µ − U

eff†
x−µ,µδx,y+µ

)

.

(11)
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Non-compact QED
◮ The non-compact U(1) lattice gauge action is defined as

SNC
GQED

(A′
µ(n)) =

1

4e2

∑

n,µ,ν

F 2
µν(n), (12)

=
1

2e2

∑

n,µ<ν

F 2
µν(n) =

βu1

2

∑

n,µ<ν

F 2
µν(n), (13)

with
Fµν(n) = [A′

µ(n) + A′
ν(n + µ̂)− A′

µ(n + ν̂)− A′
ν(n)]. (14)

◮ The U(1) momentum is defined via

dU
′q
µ (n)

dτ
=i Ȧ′

µ(n)q
f U′q

µ (n) ≡ iH′q
µ (n)U′q

µ (n), (15)

with

U′q
µ (n) =e

iqA′

µ
(n), (16)

H′q
µ(n) =h′

µ(n) qf . (17)

Since Ȧ′
µ(n) = h′

µ(n), h′
µ(n) is a conjugate field to A′

µ(n), we can consider

A′
µ(n) as coordinate and h′

µ(n) as momentum conjugate to the corresponding
coordinate.

◮ The kinetic part of the Hamiltonian can then be written as

∑

n,µ

1

2
h′2

µ(n) =
1

2qf 2

∑

n,µ

[H′q
µ(n)

2]. (18)
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Non-compact QED: gauge force

◮ U(1) gauge field update:

Since Ȧ′
µ(n) = h′

µ(n), the A′ should be updated according to

A′ → A′ + h′dτ. (19)

◮ U(1) momentum update:

The U(1) gauge force contributing to the U(1) momentum change is

dh′

dτ
= −

dSNC
GQED

dA′
, (20)

with

dSNC
GQED

/dA′
µ(n) =

1

e2

∑

ν

[

[A′
µ(n) + A′

ν(n + µ) − A′
µ(n + ν)− A′

ν(n)]

− [A′
µ(n − ν) + A′

ν(n − ν + µ) − A′
µ(n) − A′

ν(n − ν)]
]

,

(21)

=βu1

∑

ν

[Fµν(n) − Fµν(n − ν)]. (22)
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Fermion forces

◮ The fermion force has contributions from both SU(3) and U(1).

◮ Taking the MC simulation time τ derivative of the Hamiltonian and requring it to be
zero, one gets the SU(3) and U(1) fermion forces.

◮ The SU(3) contribution (QCD force) is

i Ḣµ(n) =

[

Uµ(n)
∂S

∂Uµ(n)
−

∂S

∂Uµ
†(n)

U†
µ(n)

]

−
1

Nc
Tr

[

Uµ(n)
∂S

∂Uµ(n)
−

∂S

∂Uµ
†(n)

U†
µ(n)

]

, (23)

= 2

[

Uµ(n)
∂S

∂Uµ(n)

]

AT

, (24)

where the operation AT stands for taking the anti-Hermitian and traceless part of
the matrix

MAT =
1

2
(M − M†)−

1

2Nc
Tr(M − M†). (25)
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Fermion forces

◮ The fermion force has contributions from both SU(3) and U(1).

◮ Taking the MC simulation time τ derivative of the Hamiltonian and requring it to be
zero, one gets the SU(3) and U(1) fermion forces.

◮ The U(1) contribution (QED force) is

i ḣ′
µ(n) =

∑

q

qf Tr

[

Uµ(n)
∂S

∂Uµ(n)
−

∂S

∂U
†
µ(n)

U†
µ(n)

]

, (26)

or

ḣ′
µ(n) = 2

∑

qf

qf
ImTr

[

Uµ(n)
∂S

∂Uµ(n)

]

. (27)

◮ In Eqs. (23, 24, 26, and 27), Uµ(n) is the product of SU(3) Uµ(n) and U(1) U
′q
µ (n).
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Pure gauge U(1) test
◮ The pure gauge U(1) Hamiltonian is

H[A′; e] =
∑

i

1

2
h′ 2

i + SNC
GQED

. (28)

◮ The non-compact U(1) gauge action SNC
GQED

is only a function of the dimensionality

d and lattice volume V on the finite periodic lattice

SNC
GQED

=
(d − 1)(V − 1)

2
. (29)

◮ One can use this to check the correctness of the pure gauge U(1) code.

S
N
C

G
Q
E
D
/
((
d
−

1
)(
V

−
1
)/
2
)

βu1

expected
measured

0.9990

0.9995

1.0000

1.0005

1.0010
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U(1) with fermions test

◮ The U(1) with fermion Hamiltonian is

H[Φq
e ;A

′;U′q ; e] =
∑

i

1

2
h′ 2

i + SPF + SNC
GQED

. (30)

◮ Time history of the U(1) gauge action
S
N
C

G
Q
E
D
/
(β

u
1
V
)
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SU(3) with fermions test

◮◮ The SU(3) with fermion Hamiltonian is

H[Φ
q
e ;A

′;U′q ; e] =
∑

i

1

2
h 2

i + SPF + SGQCD
. (31)

◮ Time history of the SU(3) Plaquette

R
e
(P

L
A
Q

S
U
(3
)
)
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SU(3) + U(1) with fermions test

◮ The SU(3) + U(1) with fermion Hamiltonian is

H[Φ
q
e ;A′;U′q ; e] =

∑

i

1

2
h 2

i +
∑

i

1

2
h′ 2

i + SPF + SGQCD
.+ SNC

GQED
. (32)

◮ Time history of the SU(3) Plaquette
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Integration algorithms

◮ The integration algorithm is based on decomposing the Hamiltonian in exactly
integrable pieces

H(φ, h) = H1(φ) + H2(h), (33)

with H1(φ) = S(φ) and H2(h) =
∑

i h2
i
/2 for example.

The algorithm consists of repeated applying the following two elementary steps

I1(ǫ) :(h, φ) → (h, φ+ ǫ∇hH2(h)), (34)

I2(ǫ) :(h, φ) → (h − ǫ∇φS(φ), φ). (35)

◮ The leap-frog algorithm corresponds to the following updates

Iǫ(τ) = [I1(ǫ/2)I2(ǫ)I1(ǫ/2)]Ns , (36)

with τ = Nsǫ the length of the trajectory. The leading violation due to the finite
step-size ǫ is O(ǫ2).

◮ The Omelyan integrator

[I1(ξǫ)I2(ǫ/2)I1((1 − 2ξ)ǫ)I2(ǫ/2)I1(ξǫ)]
Ns , (37)

reduces the coefficient of the ǫ2 term and improves the scaling behavior.

◮ In the MILC code for the HISQ fermion related calculations, an Omelyan based
“3G1F” integrator is used.

◮ The algorithm can be made exact by a Metropolis acceptance step: Hybrid Monte
Carlo algorithm.
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SU(3) + U(1) with fermions test

◮ The change of the Hamiltonian during the trajectory is expected to scale with ǫ2

for the integrators used.

◮ Scaling of the the change of action |∆H| with the step sizes ǫ. The upper blue
points are from the leap-frog integrator and the lower red points are from the
“3G1F” integrator.

|∆
H
|

ǫ2

0

1

2

3

4

0 0.01 0.02 0.03
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SU(3) + U(1) with fermions test

◮ The change of the Hamiltonian during the trajectory is expected to scale with ǫ2

for the integrators used.

◮ Scaling of the SU(3) Plaquette with the step sizes ǫ. The upper blue points are
from the leap-frog integrator and the lower red points are from the “3G1F”
integrator.

R
e
(P

L
A
Q

S
U
(3
)
)

ǫ2
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SU(3) + U(1) with fermions test

◮ In principle, the Hybrid Monte Carlo algorithm can be run at any step size. The
acceptance rate depends on the step sizes.

◮ Dependence of the acceptance rate as a function of the step-size ǫ
a

c
c
.

ra
te

ǫ2

0
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1

0 0.02 0.04 0.06
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Summary

◮ Lattice QCD + QED code for staggered fermion HISQ action now exists.

◮ The code has been tested and compared with theoretical expectations.

◮ It is currently based on the MILC code and runs efficiently on conventional CPUs.

◮ Parts of the code can be run on GPUs and Intel Xeon Phi processors.

◮ Exascale MILC code projects are ongoing.
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Thank You!
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BACKUP
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Appendix: Non-compact U(1) analytic results

◮ The partition function of the non-compact U(1) gauge action is

Z =

∫

[dA′
µ(n)]e

−SNC
GQED . (38)

◮ The density of state is

N(E) =

∫

[dA′
µ(n)]δ





1

2

∑

n,µ<ν

F 2
µν(n) −

d(d − 1)

2
VE



 , (39)

where E is the average “energy” in a d-dimensional lattice. It is defined as

SNC
GQED

=
βu1

2

∑

n,µ<ν

F 2
µν(n) = βu1

d(d − 1)

2
V 〈E〉 . (40)

◮ Sine the gauge group is non-compact, the above density of state is divergent
even on a finite lattice. One can factorize the divergent part by multiplying the
integrand with a Gaussian factor (i.e., introducing a photon mass term)

N(E,M) =

∫

[dA′
µ(n)]δ





1

2

∑

n,µ<ν

F 2
µν(n)−

d(d − 1)

2
VE



 e
−M2 ∑

n,µ A′2
µ(n) .

(41)
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Appendix: Non-compact U(1) analytic results

◮ The gauge action is quadratic and can be diagonalized via a unitary
transformation. The number of zero modes of the quadratic form is

z0 = V + d − 1. (42)

◮ The density of state can then be written as

N(E,M) =

∫ dV−z0
∏

n=1

dBnδ

[

1

2

∑

n

λnB2
n −

d(d − 1)

2
VE

]

(43a)

×
∏

n

e−M2B2
n

(∫

dBe−M2B

)z0

. (43b)

The integrations in Eq. (43b) are Gaussian:
∫−∞

∞
e−ax2

=
√

π/a and contain all
the divergence as M → 0. The factor in Eq. (43a) is finite.
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Appendix: Non-compact U(1) analytic results

◮ Using the hyper-spherical coordinates in (dV − z0)-dimensional space, one can
integrate over Eq. (43a) and get the density of state. Specifically, changing the
variables Bn to r cos θ1, · · ·

∫ dV−z0
∏

n=1

dBnδ

[

1

2

∑

n

λnB2
n −

d(d − 1)

2
VE

]

, (44a)

= C1

∫

drn−1δ
[

r2 − R
]

, (44b)

= C1[
1

2
R

n
2
−1(1 − einπ)], (44c)

with

n = dV − z0, (45)

R =
d(d − 1)

2
VE. (46)

Note that when n ≡ dV − z0 is even, the above integral is 0.

◮ The density of state is then

N(E) = CE
dV−z0

2
−1. (47)
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Appendix: Non-compact U(1) analytic results

◮ Now we have the analytic functional form of the density of state Eq. (47). The
partition function is now a one-dimensional integral

Z =

∫ ∞

0

dEN(E)e−βu1
d(d−1)

2
VE (48)

= C

∫ ∞

0

dEE
dV−z0

2
−1e−βu1

d(d−1)
2

VE (49)

≡ C

∫ ∞

0

dEEae−bE (50)

= Cb−1−aΓ(1 + a). (51)

with

a =
dV − z0

2
− 1, (52)

b = βu1V
d(d − 1)

2
. (53)

Again the divergence of Z is contained in the constant C.
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Appendix: Non-compact U(1) analytic results

◮ The average Plaquette energy E is then

< E >=

∫∞

0
dEN(E)Ee−βu1

d(d−1)
2

VE

∫∞
0

dEN(E)e−βu1
d(d−1)

2
VE

(54)

≡
C
∫∞

0
dEEa+1e−bE

C
∫∞

0
dEEae−bE

(55)

=
1

b

Γ(2 + a)

Γ(1 + a)
(56)

=
a + 1

b
(57)

=
1

βu1

dV − z0

d(d − 1)V
(58)

=
1

βu1

(d − 1)V − d + 1

d(d − 1)V
(59)

=
1

βu1

V − 1

dV
. (60)

From Eq. (60), we can see that βu1 〈E〉 only depends on the dimensionality d and
the volume V .
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